Redshift connector
Zipstack Cloud features a powerful SQL querying engine on top of many types of connectors, including those from Trino, some custom connectors and connectors from the open source Airbyte project. The underlying native connectors are Trino's connectors. Additionally, some parts of the documentation for these connectors have been adapted from the connector documentation found in Trino's open source project.
Please reach out to [email protected] if you need Redshift with keystore based authentication. This requires provisioning Zipstack Cloud with extra modules/properties.
The Redshift connector allows querying and creating tables in an external Amazon Redshift cluster. This can be used to join data between different systems like Redshift and Hive, or between two different Redshift clusters.
Requirements
To connect to Redshift, you need:
- Network access from Zipstack Cloud to Redshift. Port 5439 is the default port.
Configuration
To configure the Redshift connector, create a data source with the following minimum properties. Replace the connection properties as appropriate for your setup:
connection-url=jdbc:redshift://example.net:5439/database
connection-user=root
connection-password=secret
The connection-user and connection-password are typically required
and determine the user credentials for the connection, often a service
user. You can use secrets </security/secrets> to avoid actual values
in the catalog properties files.
Connection security
If you have TLS configured with a globally-trusted certificate installed
on your data source, you can enable TLS between your cluster and the
data source by appending a parameter to the JDBC connection string set
in the connection-url catalog configuration property.
For example, on version 2.1 of the Redshift JDBC driver, TLS/SSL is
enabled by default with the SSL parameter. You can disable or further
configure TLS by appending parameters to the connection-url
configuration property:
connection-url=jdbc:redshift://example.net:5439/database;SSL=TRUE;
For more information on TLS configuration options, see the Redshift JDBC driver documentation.
Data source authentication
The connector can provide credentials for the data source connection in multiple ways:
inline, in the connector configuration file
in a separate properties file
in a key store file
as extra credentials set when connecting to Trino
You can use secrets </security/secrets> to avoid storing sensitive
values in the catalog properties files.
The following table describes configuration properties for connection credentials:
| Property name | Description |
|---|---|
credential-provider.type | Type of the credential provider. Must be one of INLINE, FILE, or KEYSTORE; defaults to INLINE. |
connection-user | Connection user name. |
connection-password | Connection password. |
user-credential-name | Name of the extra credentials property, whose value to use as the user name. See extraCredentials in Parameter reference. |
password-credential-name | Name of the extra credentials property, whose value to use as the password. |
connection-credential-file | Location of the properties file where credentials are present. It must contain the connection-user and connection-password properties. |
keystore-file-path | The location of the Java Keystore file, from which to read credentials. |
keystore-type | File format of the keystore file, for example JKS or PEM. |
keystore-password | Password for the key store. |
keystore-user-credential-name | Name of the key store entity to use as the user name. |
keystore-user-credential-password | Password for the user name key store entity. |
keystore-password-credential-name | Name of the key store entity to use as the password. |
keystore-password-credential-password | Password for the password key store entity. |
Multiple Redshift databases or clusters
The Redshift connector can only access a single database within a Redshift cluster. Thus, if you have multiple Redshift databases, or want to connect to multiple Redshift clusters, you must configure multiple data sources.
General configuration properties
The following table describes general catalog configuration properties for the connector:
| Property name | Description | Default value |
|---|---|---|
case-insensitive-name-matching | Support case insensitive schema and table names. | false |
case-insensitive-name-matching.cache-ttl | This value should be a duration. | 1m |
case-insensitive-name-matching.config-file | Path to a name mapping configuration file in JSON format that allows Trino to disambiguate between schemas and tables with similar names in different cases. | null |
case-insensitive-name-matching.config-file.refresh-period | Frequency with which Trino checks the name matching configuration file for changes. This value should be a duration. | (refresh disabled) |
metadata.cache-ttl | The duration for which metadata, including table and column statistics, is cached. | 0s (caching disabled) |
metadata.cache-missing | Cache the fact that metadata, including table and column statistics, is not available | false |
metadata.cache-maximum-size | Maximum number of objects stored in the metadata cache | 10000 |
write.batch-size | Maximum number of statements in a batched execution. Do not change this setting from the default. Non-default values may negatively impact performance. | 1000 |
dynamic-filtering.enabled | Push down dynamic filters into JDBC queries | true |
dynamic-filtering.wait-timeout | Maximum duration for which Trino will wait for dynamic filters to be collected from the build side of joins before starting a JDBC query. Using a large timeout can potentially result in more detailed dynamic filters. However, it can also increase latency for some queries. | 20s |
Domain compaction threshold
Pushing down a large list of predicates to the data source can
compromise performance. Trino compacts large predicates into a simpler
range predicate by default to ensure a balance between performance and
predicate pushdown. If necessary, the threshold for this compaction can
be increased to improve performance when the data source is capable of
taking advantage of large predicates. Increasing this threshold may
improve pushdown of large dynamic filters </admin/dynamic-filtering>.
The domain-compaction-threshold catalog configuration property or the
domain_compaction_threshold
catalog session property <session-properties-definition> can be used
to adjust the default value of 32 for this threshold.
Procedures
system.flush_metadata_cache()Flush JDBC metadata caches. For example, the following system call flushes the metadata caches for all schemas in the
examplecatalogUSE example.example_schema;
CALL system.flush_metadata_cache();
Case insensitive matching
When case-insensitive-name-matching is set to true, Trino is able to
query non-lowercase schemas and tables by maintaining a mapping of the
lowercase name to the actual name in the remote system. However, if two
schemas and/or tables have names that differ only in case (such as
\"customers\" and \"Customers\") then Trino fails to query them due to
ambiguity.
In these cases, use the case-insensitive-name-matching.config-file
catalog configuration property to specify a configuration file that maps
these remote schemas/tables to their respective Trino schemas/tables:
{
"schemas": [
{
"remoteSchema": "CaseSensitiveName",
"mapping": "case_insensitive_1"
},
{
"remoteSchema": "cASEsENSITIVEnAME",
"mapping": "case_insensitive_2"
}],
"tables": [
{
"remoteSchema": "CaseSensitiveName",
"remoteTable": "tablex",
"mapping": "table_1"
},
{
"remoteSchema": "CaseSensitiveName",
"remoteTable": "TABLEX",
"mapping": "table_2"
}]
}
Queries against one of the tables or schemes defined in the mapping
attributes are run against the corresponding remote entity. For example,
a query against tables in the case_insensitive_1 schema is forwarded
to the CaseSensitiveName schema and a query against case_insensitive_2
is forwarded to the cASEsENSITIVEnAME schema.
At the table mapping level, a query on case_insensitive_1.table_1 as
configured above is forwarded to CaseSensitiveName.tablex, and a query
on case_insensitive_1.table_2 is forwarded to
CaseSensitiveName.TABLEX.
By default, when a change is made to the mapping configuration file,
Trino must be restarted to load the changes. Optionally, you can set the
case-insensitive-name-mapping.refresh-period to have Trino refresh the
properties without requiring a restart:
case-insensitive-name-mapping.refresh-period=30s
Non-transactional INSERT
The connector supports adding rows using
INSERT statements </sql/insert>. By default, data insertion is
performed by writing data to a temporary table. You can skip this step
to improve performance and write directly to the target table. Set the
insert.non-transactional-insert.enabled catalog property or the
corresponding non_transactional_insert catalog session property to
true.
Note that with this property enabled, data can be corrupted in rare cases where exceptions occur during the insert operation. With transactions disabled, no rollback can be performed.
Querying Redshift
The Redshift connector provides a schema for every Redshift schema. You
can see the available Redshift schemas by running SHOW SCHEMAS:
SHOW SCHEMAS FROM example;
If you have a Redshift schema named web, you can view the tables in
this schema by running SHOW TABLES:
SHOW TABLES FROM example.web;
You can see a list of the columns in the clicks table in the web
database using either of the following:
DESCRIBE example.web.clicks;
SHOW COLUMNS FROM example.web.clicks;
Finally, you can access the clicks table in the web schema:
SELECT * FROM example.web.clicks;
If you used a different name for your catalog properties file, use that
catalog name instead of example in the above examples.
Type mapping
Type mapping configuration properties
The following properties can be used to configure how data types from the connected data source are mapped to Trino data types and how the metadata is cached in Trino.
| Property name | Description | Default value |
|---|---|---|
unsupported-type-handling | Configure how unsupported column data types are handled:IGNORE, column is not accessible.CONVERT_TO_VARCHAR, column is converted to unbounded VARCHAR.The respective catalog session property is unsupported_type_handling. | IGNORE |
jdbc-types-mapped-to-varchar | Allow forced mapping of comma separated lists of data types to convert to unbounded VARCHAR |
SQL support
The connector provides read access and write access to data and metadata
in Redshift. In addition to the
globally available <sql-globally-available> and
read operation <sql-read-operations> statements, the connector
supports the following features:
/sql/insert/sql/delete/sql/truncatesql-schema-table-management
SQL DELETE
If a WHERE clause is specified, the DELETE operation only works if
the predicate in the clause can be fully pushed down to the data source.
ALTER TABLE
The connector does not support renaming tables across multiple schemas. For example, the following statement is supported:
ALTER TABLE example.schema_one.table_one RENAME TO example.schema_one.table_two
The following statement attempts to rename a table across schemas, and therefore is not supported:
ALTER TABLE example.schema_one.table_one RENAME TO example.schema_two.table_two
ALTER SCHEMA
The connector supports renaming a schema with the ALTER SCHEMA RENAME
statement. ALTER SCHEMA SET AUTHORIZATION is not supported.
Table functions
The connector provides specific table functions </functions/table> to
access Redshift.
query(varchar) -> table
The query function allows you to query the underlying database
directly. It requires syntax native to Redshift, because the full query
is pushed down and processed in Redshift. This can be useful for
accessing native features which are not implemented in Trino or for
improving query performance in situations where running a query natively
may be faster.
::: note ::: title Note :::
Polymorphic table functions may not preserve the order of the query
result. If the table function contains a query with an ORDER BY
clause, the function result may not be ordered as expected.
:::
For example, query the example catalog and select the top 10 nations
by population:
SELECT
*
FROM
TABLE(
example.system.query(
query => 'SELECT
TOP 10 *
FROM
tpch.nation
ORDER BY
population DESC'
)
);